Prediction of Mechanical Properties of TWIP Steels using Artificial Neural Network Modeling

Authors

  • A. Kermanpur Department of Materials Engineering, Isfahan University of Technology
  • A. Najafizadeh Foold Institute of Technology, Fouldshahar, Isfahan 8491663763, Iran
  • K. Kiani Department of Computer Engineering, Semnan University, Semnan 35131-19111, Iran
  • M. Karkehabadi Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111
Abstract:

In recent years, great attention has been paid to the development of high manganese austenitic TWIP steels exhibiting high tensile strength and exceptional total elongation. Due to low stacking fault energy (SFE), cross slip becomes more difficult in these steels and mechanical twinning is then the favored deformation mode besides dislocation gliding. Chemical composition along with processing parameters has profound effects on SFE and mechanical properties of TWIP steels. In this work, artificial neural network (ANN) models were developed to predict tensile properties of these steels. In these models, %Mn, %Al, %Si, %C, cold rolling reduction, strain rate, annealing temperature, and time were chosen as input, while engineering yield strength (Y.S.), tensile strength (T.S.) and total elongation (T.E.) were considered to be output parameters. The network models were trained for each output individually. A reasonable agreement was found between the results of tensile tests and the predictions, showing the robustness of the present ANN models. The developed models can be used as a guide to achieve high strength and ductility by (i) alloy design or (ii) controlling processing parameters through the strain-induced twinning process.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Prediction of ultimate strength of shale using artificial neural network

A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...

full text

Prediction of Cardiovascular Diseases Using an Optimized Artificial Neural Network

Introduction:  It is of utmost importance to predict cardiovascular diseases correctly. Therefore, it is necessary to utilize those models with a minimum error rate and maximum reliability. This study aimed to combine an artificial neural network with the genetic algorithm to assess patients with myocardial infarction and congestive heart failure.   Materials & Methods: This study utilized a m...

full text

Prediction of Egg Production Using Artificial Neural Network

Artificial neural networks (ANN) have shown to be a powerful tool for system modeling in a wide range of applications. The focus of this study is on neural network applications to data analysis in egg production. An ANN model with two hidden layers, trained with a back propagation algorithm, successfully learned the relationship between the input (age of hen) and output (egg production) variabl...

full text

Surface Tension Prediction of Hydrocarbon Mixtures Using Artificial Neural Network

In this study, artificial neural network was used to predict the surface tension of 20 hydrocarbon mixtures. Experimental data was divided into two parts (70% for training and 30% for testing). Optimal configuration of the network was obtained with minimization of prediction error on testing data. The accuracy of our proposed model was compared with four well-known empirical equations. The arti...

full text

Prediction of Engineered Cementitious Composite Material Properties Using Artificial Neural Network

Cement-based composite materials like Engineered Cementitious Composites (ECCs) are applicable in the strengthening of structures because of the high tensile strength and strain. Proper mix proportion, which has the best mechanical properties, is so essential in ECC design material to use in structural components. In this paper, after finding the best mix proportion based on uniaxial tensile st...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue 2

pages  27- 37

publication date 2018-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023